| Package Data | |
|---|---|
| Maintainer Username: | moe-mizrak | 
| Package Create Date: | 2024-05-12 | 
| Package Last Update: | 2025-07-21 | 
| Home Page: | https://moe-mizrak.gitbook.io/laravel-openrouter/ | 
| Language: | PHP | 
| License: | MIT | 
| Last Refreshed: | 2025-10-29 15:00:28 | 
| Package Statistics | |
|---|---|
| Total Downloads: | 40,026 | 
| Monthly Downloads: | 9,591 | 
| Daily Downloads: | 351 | 
| Total Stars: | 130 | 
| Total Watchers: | 2 | 
| Total Forks: | 16 | 
| Total Open Issues: | 0 | 
This Laravel package provides an easy-to-use interface for integrating OpenRouter into your Laravel applications. OpenRouter is a unified interface for Large Language Models (LLMs) that allows you to interact with various AI models through a single API.
v2.x.x (latest compatible version)
v1.0.9.
You can install the package via composer:
composer require moe-mizrak/laravel-openrouter
You can publish the config file with:
php artisan vendor:publish --tag=laravel-openrouter
This is the contents of the published config file:
return [
    'api_endpoint' => env('OPENROUTER_API_ENDPOINT', 'https://openrouter.ai/api/v1/'),
    'api_key'      => env('OPENROUTER_API_KEY'),
    'api_timeout'  => env('OPENROUTER_API_TIMEOUT', 20),
    'title'        => env('OPENROUTER_API_TITLE', 'laravel-openrouter'),
    'referer'      => env('OPENROUTER_API_REFERER', 'https://github.com/moe-mizrak/laravel-openrouter'),
];
After publishing the package configuration file, you'll need to add the following environment variables to your .env file:
OPENROUTER_API_ENDPOINT=https://openrouter.ai/api/v1/
OPENROUTER_API_KEY=your_api_key
OPENROUTER_API_TIMEOUT=request_timeout
OPENROUTER_API_TITLE=
OPENROUTER_API_REFERER=
[!NOTE]
OPENROUTER_API_ENDPOINT: The endpoint URL for the OpenRouter API (default: https://openrouter.ai/api/v1/).
OPENROUTER_API_KEY: Your API key for accessing the OpenRouter API. You can obtain this key from the OpenRouter dashboard.
OPENROUTER_API_TIMEOUT: Request timeout in seconds. Increase value to 120 - 180 if you use long-thinking models like openai/o1 (default: 20)
OPENROUTER_API_TITLE: Optional - Site URL for rankings on openrouter.ai
OPENROUTER_API_REFERER: Optional - Site referer for rankings on openrouter.ai
This package provides two ways to interact with the OpenRouter API:
LaravelOpenRouter facadeOpenRouterRequest class directly.Both methods utilize the ChatData DTO class to structure the data sent to the API.
The ChatData class is used to encapsulate the data required for making chat requests to the OpenRouter API. Here's a breakdown of the key properties:
MessageData objects representing the chat messages. This field is XOR-gated with the prompt field.messages field.models field.ResponseFormatData class representing the desired format for the response.false because enabling usage accounting will add a few hundred milliseconds to the response as the API calculates token counts and costs.These properties control various aspects of the generated response (more info):
Only natively suported by OpenAI models. For others, we submit a YAML-formatted string with these tools at the end of the prompt.
ToolCallData objects for function calling.model field.RouteType::FALLBACK).ProviderPreferencesData DTO object for configuring provider preferences.This is a sample chat data instance (Refer to spatie laravel-data how to create, use DTOs):
$chatData = new ChatData(
    messages: [
        new MessageData(
            role: RoleType::USER,
            content: [
                new TextContentData(
                    type: TextContentData::ALLOWED_TYPE,
                    text: 'This is a sample text content.',
                ),
                new ImageContentPartData(
                    type: ImageContentPartData::ALLOWED_TYPE,
                    image_url: new ImageUrlData(
                        url: 'https://example.com/image.jpg',
                        detail: 'Sample image',
                    ),
                ),
            ],
        ),
    ],
    response_format: new ResponseFormatData(
        type: 'json_object',
    ),
    usage: true,
    stop: ['stop_token'],
    stream: true,
    include_reasoning: true,
    max_tokens: 1024,
    temperature: 0.7,
    top_p: 0.9,
    top_k: 50,
    frequency_penalty: 0.5,
    presence_penalty: 0.2,
    repetition_penalty: 1.2,
    seed: 42,
    tool_choice: 'auto',
    tools: [
        // ToolCallData instances
    ],
    logit_bias: [
        '50256' => -100,
    ],
    transforms: ['middle-out'],
    models: ['model1', 'model2'],
    route: RouteType::FALLBACK,
    provider: new ProviderPreferencesData(
        allow_fallbacks: true,
        require_parameters: true,
        data_collection: DataCollectionType::ALLOW,
    ),
);
The LaravelOpenRouter facade offers a convenient way to make OpenRouter API requests.
To send a chat request, create an instance of ChatData and pass it to the chatRequest method:
$content = 'Tell me a story about a rogue AI that falls in love with its creator.'; // Your desired prompt or content
$model = 'mistralai/mistral-7b-instruct:free'; // The OpenRouter model you want to use (https://openrouter.ai/models)
$messageData = new MessageData(
    content: $content,
    role: RoleType::USER,
);
$chatData = new ChatData(
    messages: [
        $messageData,
    ],
    model: $model,
    max_tokens: 100, // Adjust this value as needed
);
$chatResponse = LaravelOpenRouter::chatRequest($chatData);
Streaming chat request is also supported and can be used as following by using chatStreamRequest function:
$content = 'Tell me a story about a rogue AI that falls in love with its creator.'; // Your desired prompt or content
$model = 'mistralai/mistral-7b-instruct:free'; // The OpenRouter model you want to use (https://openrouter.ai/models)
$messageData = new MessageData(
    content: $content,
    role: RoleType::USER,
);
$chatData = new ChatData(
    messages: [
        $messageData,
    ],
    model: $model,
    max_tokens: 100,
);
/*
 * Calls chatStreamRequest ($promise is type of PromiseInterface)
 */
$promise = LaravelOpenRouter::chatStreamRequest($chatData);
// Waits until the promise completes if possible.
$stream = $promise->wait(); // $stream is type of GuzzleHttp\Psr7\Stream
/*
 * 1) You can retrieve whole raw response as: - Choose 1) or 2) depending on your case.
 */
$rawResponseAll = $stream->getContents(); // Instead of chunking streamed response as below - while (! $stream->eof()), it waits and gets raw response all together.
$response = LaravelOpenRouter::filterStreamingResponse($rawResponseAll); // Optionally you can use filterStreamingResponse to filter raw streamed response, and map it into array of responseData DTO same as chatRequest response format.
// 2) Or Retrieve streamed raw response as it becomes available:
while (! $stream->eof()) {
    $rawResponse = $stream->read(1024); // readByte can be set as desired, for better performance 4096 byte (4kB) can be used.
    /*
     * Optionally you can use filterStreamingResponse to filter raw streamed response, and map it into array of responseData DTO same as chatRequest response format.
     */
    $response = LaravelOpenRouter::filterStreamingResponse($rawResponse);
}
You do not need to specify 'stream' = true in ChatData since chatStreamRequest does it for you.
This is the expected sample rawResponse (raw response returned from OpenRouter stream chunk) $rawResponse:
"""
: OPENROUTER PROCESSING\n
\n
data: {"id":"gen-eWgGaEbIzFq4ziGGIsIjyRtLda54","model":"mistralai/mistral-7b-instruct:free","object":"chat.completion.chunk","created":1718885921,"choices":[{"index":0,"delta":{"role":"assistant","content":"Title"},"finish_reason":null}]}\n
\n
data: {"id":"gen-eWgGaEbIzFq4ziGGIsIjyRtLda54","model":"mistralai/mistral-7b-instruct:free","object":"chat.completion.chunk","created":1718885921,"choices":[{"index":0,"delta":{"role":"assistant","content":": Quant"},"finish_reason":null}]}\n
\n
data: {"id":"gen-eWgGaEbIzFq4ziGGIsIjyRtLda54","model":"mistralai/mistral-7b-instruct:free","object":"chat.completion.chunk","created":1718885921,"choices":[{"index":0,"delta":{"role":"assistant","content":"um Echo"},"finish_reason":null}]}\n
\n
data: {"id":"gen-eWgGaEbIzFq4ziGGIsIjyRtLda54","model":"mistralai/mistral-7b-instruct:free","object":"chat.completion.chunk","created":1718885921,"choices":[{"index":0,"delta":{"role":"assistant","content":": A Sym"},"finish_reason":null}]}\n
\n
data: {"id":"gen-eWgGaEbIzFq4ziGG
"""
"""
IsIjyRtLda54","model":"mistralai/mistral-7b-instruct:free","object":"chat.completion.chunk","created":1718885921,"choices":[{"index":0,"delta":{"role":"assistant","content":"phony of Code"},"finish_reason":null}]}\n
\n
data: {"id":"gen-eWgGaEbIzFq4ziGGIsIjyRtLda54","model":"mistralai/mistral-7b-instruct:free","object":"chat.completion.chunk","created":1718885921,"choices":[{"index":0,"delta":{"role":"assistant","content":"\n\nIn"},"finish_reason":null}]}\n
\n
data: {"id":"gen-eWgGaEbIzFq4ziGGIsIjyRtLda54","model":"mistralai/mistral-7b-instruct:free","object":"chat.completion.chunk","created":1718885921,"choices":[{"index":0,"delta":{"role":"assistant","content":" the heart of"},"finish_reason":null}]}\n
\n
data: {"id":"gen-eWgGaEbIzFq4ziGGIsIjyRtLda54","model":"mistralai/mistral-7b-instruct:free","object":"chat.completion.chunk","created":1718885921,"choices":[{"index":0,"delta":{"role":"assistant","content":" the bustling"},"finish_reason":null}]}\n
\n
data: {"id":"gen-eWgGaEbIzFq4ziGGIsIjyRtLda54","model":"mistralai/mistra
"""
"""
l-7b-instruct:free","object":"chat.completion.chunk","created":1718885921,"choices":[{"index":0,"delta":{"role":"assistant","content":" city of Ne"},"finish_reason":null}]}\n
\n
data: {"id":"gen-eWgGaEbIzFq4ziGGIsIjyRtLda54","model":"mistralai/mistral-7b-instruct:free","object":"chat.completion.chunk","created":1718885921,"choices":[{"index":0,"delta":{"role":"assistant","content":"o-Tok"},"finish_reason":null}]}\n
\n
data: {"id":"gen-eWgGaEbIzFq4ziGGIsIjyRtLda54","model":"mistralai/mistral-7b-instruct:free","object":"chat.completion.chunk","created":1718885921,"choices":[{"index":0,"delta":{"role":"assistant","content":"yo, a"},"finish_reason":null}]}\n
\n
data: {"id":"gen-eWgGaEbIzFq4ziGGIsIjyRtLda54","model":"mistralai/mistral-7b-instruct:free","object":"chat.completion.chunk","created":1718885921,"choices":[{"index":0,"delta":{"role":"assistant","content":" brilliant young research"},"finish_reason":null}]}\n
\n
data: {"id":"gen-eWgGaEbIzFq4ziGGIsIjyRtLda54","model":"mistralai/mistral-7b-instruct:free","object":"chat.com
"""
...
: OPENROUTER PROCESSING\n
\n
data: {"id":"gen-C6Xym94jZcvJv2vVpxYSyw2tV1fR","model":"mistralai/mistral-7b-instruct:free","object":"chat.completion.chunk","created":1718887189,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"finish_reason":null}],"usage":{"prompt_tokens":23,"completion_tokens":100,"total_tokens":123,"cost":0.00000114}}\n
\n
data: [DONE]\n
Last data: carries usage information of streaming.
data: [DONE]\n returned from OpenRouter server when streaming is over.
This is the sample response after filterStreamingResponse:
[
    ResponseData(
        id: "gen-QcWgjEtiEDNHgomV2jjoQpCZlkRZ",
        model: "mistralai/mistral-7b-instruct:free",
        object: "chat.completion.chunk",
        created: 1718888436,
        choices: [
            [
                "index" => 0,
                "delta" => [
                    "role" => "assistant",
                    "content" => "Title"
                ],
                "finish_reason" => null
            ]
        ],
        usage: null
    ),
    ResponseData(
        id: "gen-QcWgjEtiEDNHgomV2jjoQpCZlkRZ",
        model: "mistralai/mistral-7b-instruct:free",
        object: "chat.completion.chunk",
        created: 1718888436,
        choices: [
            [
                "index" => 0,
                "delta" => [
                    "role" => "assistant",
                    "content" => "Quant"
                ],
                "finish_reason" => null
            ]
        ],
        usage: null
    ),
    ...
    new ResponseData(
        id: 'gen-QcWgjEtiEDNHgomV2jjoQpCZlkRZ',
        model: 'mistralai/mistral-7b-instruct:free',
        object: 'chat.completion.chunk',
        created: 1718888436,
        choices: [
            [
                'index' => 0,
                'delta' => [
                    'role' => 'assistant',
                    'content' => '',
                ],
                'finish_reason' => null,
            ],
        ],
        usage: new UsageData(
            prompt_tokens: 23,
            completion_tokens: 100,
            total_tokens: 123,
            cost: 0.00000114
        ),
    ),
]
If you want to maintain conversation continuity meaning that historical chat will be remembered and considered for your new chat request, you need to send historical messages along with the new message:
$model = 'mistralai/mistral-7b-instruct:free';
$firstMessage = new MessageData(
    role: RoleType::USER,
    content: 'My name is Moe, the AI necromancer.',
);
$chatData = new ChatData(
    messages: [
        $firstMessage,
    ],
    model: $model,
);
// This is the chat which you want LLM to remember
$oldResponse = LaravelOpenRouter::chatRequest($chatData);
/*
* You can skip part above and just create your historical message below (maybe you retrieve historical messages from DB etc.)
*/
// Here adding historical response to new message
$historicalMessage = new MessageData(
    role: RoleType::ASSISTANT, // Set as assistant since it is a historical message retrieved previously
    content: Arr::get($oldResponse->choices[0], 'message.content'), // Historical response content retrieved from previous chat request
);
// This is your new message
$newMessage = new MessageData(
    role: RoleType::USER,
    content: 'Who am I?',
);
$chatData = new ChatData(
    messages: [
        $historicalMessage,
        $newMessage,
    ],
    model: $model,
);
$response = LaravelOpenRouter::chatRequest($chatData);
Expected response:
$content = Arr::get($response->choices[0], 'message.content');
// content = You are Moe, a fictional character and AI Necromancer, as per the context of the conversation we've established. In reality, you are the user interacting with me, an assistant designed to help answer questions and engage in friendly conversation.
(Please also refer to OpenRouter Document Structured Output for models supporting structured output, also for more details)
If you want to receive the response in a structured format, you can specify the type property for response_format (ResponseFormatData) as json_object in the ChatData object.
Additionally, it's recommended to set the require_parameters property for provider (ProviderPreferencesData) to true in the ChatData object.
[!CAUTION] When using structured outputs, you may encounter these scenarios:
- Model doesnβt support structured outputs
- Invalid schema
Also: If you face an error, remove
require_parametersproperty ofproviderto see the result.Check out Requiring Providers to Support All Parameters for more details.
$chatData = new ChatData(
    messages: [
        new MessageData(
            role: RoleType::USER,
            content: 'Tell me a story about a rogue AI that falls in love with its creator.',
        ),
    ],
    model: 'mistralai/mistral-7b-instruct:free',
    response_format: new ResponseFormatData(
        type: 'json_object',
    ),
    provider: new ProviderPreferencesData(
        require_parameters: true,
    ),
);
You can also specify the response_format as json_schema to receive the response in a specified schema format (Advisable to set 'strict' => true in json_schema array for strict schema):
$chatData = new ChatData(
    messages: [
        new MessageData(
            role   : RoleType::USER,
            content: 'Tell me a story about a rogue AI that falls in love with its creator.',
        ),
    ],
    model: 'mistralai/mistral-7b-instruct:free',
    response_format: new ResponseFormatData(
        type: 'json_schema',
        json_schema: [
            'name' => 'article',
            'strict' => true,
            'schema' => [
                'type' => 'object',
                'properties' => [
                    'title' => [
                        'type' => 'string',
                        'description' => 'article title'
                    ],
                    'details' => [
                        'type' => 'string',
                        'description' => 'article detail'
                    ],
                    'keywords' => [
                        'type' => 'string',
                        'description' => 'article keywords',
                    ],
                ],
                'required' => ['title', 'details', 'keywords'],
                'additionalProperties' => false
            ]
        ],
    ),
    provider: new ProviderPreferencesData(
        require_parameters: true,
    ),
);
[!TIP] You can also use prompt engineering to obtain structured output and control the format of responses.
To retrieve the cost of a generation, first make a chat request and obtain the generationId. Then, pass the generationId to the costRequest method:
$content = 'Tell me a story about a rogue AI that falls in love with its creator.'; // Your desired prompt or content
$model = 'mistralai/mistral-7b-instruct:free'; // The OpenRouter model you want to use (https://openrouter.ai/models)
$messageData = new MessageData(
    content: $content,
    role   : RoleType::USER,
);
$chatData = new ChatData(
    messages: [
        $messageData,
    ],
    model: $model,
    max_tokens: 100,
);
$chatResponse = LaravelOpenRouter::chatRequest($chatData);
$generationId = $chatResponse->id; // generation id which will be passed to costRequest
$costResponse = LaravelOpenRouter::costRequest($generationId);
To retrieve rate limit and credits left on the API key:
$limitResponse = LaravelOpenRouter::limitRequest();
You can also inject the OpenRouterRequest class in the constructor of your class and use its methods directly.
public function __construct(protected OpenRouterRequest $openRouterRequest) {}
Similarly, to send a chat request, create an instance of ChatData and pass it to the chatRequest method:
$content = 'Tell me a story about a rogue AI that falls in love with its creator.'; // Your desired prompt or content
$model = 'mistralai/mistral-7b-instruct:free'; // The OpenRouter model you want to use (https://openrouter.ai/models)
$messageData = new MessageData(
    content: $content,
    role   : RoleType::USER,
);
$chatData = new ChatData(
    messages: [
        $messageData,
    ],
    model: $model,
    max_tokens: 100,
);
$response = $this->openRouterRequest->chatRequest($chatData);
Similarly, to retrieve the cost of a generation, create a chat request to obtain the generationId, then pass the generationId to the costRequest method:
$content = 'Tell me a story about a rogue AI that falls in love with its creator.';
$model = 'mistralai/mistral-7b-instruct:free'; // The OpenRouter model you want to use (https://openrouter.ai/models)
$messageData = new MessageData(
    content: $content,
    role   : RoleType::USER,
);
$chatData = new ChatData(
    messages: [
        $messageData,
    ],
    model: $model,
    max_tokens: 100,
);
$chatResponse = $this->openRouterRequest->chatRequest($chatData);
$generationId = $chatResponse->id; // generation id which will be passed to costRequest
$costResponse = $this->openRouterRequest->costRequest($generationId);
Similarly, to retrieve rate limit and credits left on the API key:
$limitResponse = $this->openRouterRequest->limitRequest();
We welcome contributions! If you'd like to improve this package, simply create a pull request with your changes. Your efforts help enhance its functionality and documentation.
Laravel OpenRouter is an open-sourced software licensed under the MIT license.